Renormalization group and perfect operators for stochastic differential equations.
نویسندگان
چکیده
We develop renormalization group (RG) methods for solving partial and stochastic differential equations on coarse meshes. RG transformations are used to calculate the precise effect of small-scale dynamics on the dynamics at the mesh size. The fixed point of these transformations yields a perfect operator: an exact representation of physical observables on the mesh scale with minimal lattice artifacts. We apply the formalism to simple nonlinear models of critical dynamics, and show how the method leads to an improvement in the computational performance of Monte Carlo methods.
منابع مشابه
Perfect Discretizations of Differential Operators
In this paper we investigate an approach for the numerical solution of differential equations which is based on the perfect discretization of actions. Such perfect discretizations show up at the fixed points of renormalization group transformations. This technique of integrating out the high momentum degrees of freedom with a path integral has been mainly used in lattice field theory, therefore...
متن کاملStochastic formulation of the renormalization group: supersymmetric structure and topology of the space of couplings
The exact or Wilson renormalization group equations can be formulated as a functional Fokker-Planck equation in the infinite-dimensional configuration space of a field theory, suggesting a stochastic process in the space of couplings. Indeed, the ordinary renormalization group differential equations can be supplemented with noise, making them into stochastic Langevin equations. Furthermore, if ...
متن کاملApplication of DJ method to Ito stochastic differential equations
This paper develops iterative method described by [V. Daftardar-Gejji, H. Jafari, An iterative method for solving nonlinear functional equations, J. Math. Anal. Appl. 316 (2006) 753-763] to solve Ito stochastic differential equations. The convergence of the method for Ito stochastic differential equations is assessed. To verify efficiency of method, some examples are ex...
متن کاملStudy on efficiency of the Adomian decomposition method for stochastic differential equations
Many time-varying phenomena of various fields in science and engineering can be modeled as a stochastic differential equations, so investigation of conditions for existence of solution and obtain the analytical and numerical solutions of them are important. In this paper, the Adomian decomposition method for solution of the stochastic differential equations are improved. Uniqueness and converg...
متن کاملA numerical renormalization group approach for calculating the spectrum of a vibronic system occurring in molecules or impurities in insulators
Theoretically, in order to describe the behavior of a spectrum, a mathematical model whichcould predict the spectrum characteristics is needed. Since in this study a Two-state system has beenused like models which was introduced previously past and could couple with the environment, theformer ideas have been extended in this study. we use the second quantized version for writing thisHamiltonian...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 63 3 Pt 2 شماره
صفحات -
تاریخ انتشار 2001